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1.1 PROGRAM SUMMARY

The program was initiated in June,1989 with the issuance of an Authorization
to Proceed (ATP). The NASA-MSFC contract, NAS 8-37365 , Phase 1 period of perfor-
mance was through September,1991.

Full-scale concept design began at ATP with the first concept review held in
September 1989. This review solidified the injector and chamber concept and allowed
subscale design to proceed. Design work continued on the fullscale configuration until,
in March 1990, NASA-MSFC officially put fullscale activities on hold due to budget
restraints.

Subscale design began after the fullscale concept review. The design task
required approximately seven months to complete, and culminated in a Critical Design
Review (CDR) in June 1990.

Fabrication of subscale hardware was initiated by ordering long-lead compo-
nents and materials in January 1990. At the conclusion of the design phase in June,
most long-lead items had been received. Fabrication began on schedule. Very few fab-
rication problems were encountered, and the hardware was completed in December
1990.

The assembly and cleaning of the components was more difficult than
expected due to their large size and weight. The components were ready for the test
stand in March, 1991. Delays encountered in assembly and cleaning caused the pro-
gram to miss its testing window in the test area, which resuited in a 6 month delay.

Test installation and instrumentation began in mid-September 1991. This
included test readiness reviews and coordination meetings. Calibration and propellant
loading followed. The first hot-fire occurred on 16 October 1991. The testing program
progressed remarkably well for new and unique hardware. A total of 32 tests were
accomplished, satisfying all goals for test data and hardware durability. The test com-
ponents were still very serviceable on December 11, the last day of testing. Data analy-
sis and the writing of the final report were accomplished in mid 1992. Test data and
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results from this subscale testing will be applicable to low-cost pressure-fed and pump-
fed LOX / RP engines.

1.2 BACKGROUND

1.2.1 LRB Study Results

In 1987, Martin Marietta Manned Space Systems Division , Aerojet
Propulsion Division and others, embarked on a study to evaluate the feasibility of a
Liquid Rocket Booster (LRB) system to replace the Solid Rocket Boosters (SRB's) of the
current Space Shuttle configuration. This study was performed for NASA- MSFC
(NAS8-37136), to evaluate a system that would have operational advantages over the
present system;

* Increase Space Transportation System (STS) Safety and
Reliability (Abort Capability, Throttleability)

» STS Integration with Minimum Impact ( No ET or Launch Pad
Mods)

* Increase STS Performance (Eliminate SSME Boost Phase)

The study concluded that LRB's are a viable alternative to the SRB's
for the space shuttle system. The following recommendations and conclusions were
drawn:

* LOX/RP-1is the recommended fuel for both Pump and Pressure
Fed Systems

+ Both pump and pressure-fed versions would be expendable
+ Both versions can be flown within present STS constraints

+ Technology requirements for the pressure fed version include
Large Propellant tank Pressurization Systems and Large, Low Pc
Thrust Chamber Characterization

APTGO104.116-1.02 2 mI82



1.2.2 Pressure Fed Technology Program

In late 1988, Aerojet responded to an RFP from NASA-Marshall Space
Flight Center for the development of pressure fed technology. The program was
awarded to Aerojet in June 1989 and consisted of the following Tasks:

(1) Perform large scale preliminary analysis to determine operating
parameters and configuration requirements

(2) Design , build, and test subscale hardware to obtain technology for
full scale design

(3) Design and build a full size test article (750 k thrust) for testing at
MSFC

The program was modified in 1991 to change the full size task to an
option that could be exercised as late as December 1992.

1.3 METHODOLOGY

The methodology used to develop this new technology is similar to the
methods Aerojet has been using successfully for over 20 years for earth storable propel-
lants engines and for the last several years to develop LOX / RP engines. It combines
the use of state-of-the-art combustion models and subscale testing to successfully
develop full scale engine designs with minimum development cost. Our design method-
ology is shown in the following chart. This methodology has been used successfully with
the Injector Characterization Program, AFAL contract F04611-85-C-0100 (referred to as
the -0100 program) as well as the just-completed LOX/Hydrocarbon Rocket Engine
Analytical Design Methodology Development and Validation program (NAS 3-25556).

APTAG0104.118-1.073 2192



FULLSIZE ||  FULLSIZE
DESIGN FABRICATION

FULLSIZE

TESTING

For this program, we were fortunate to have a new analysis tool avail-
able. Aerojet has developed, along with NASA-Lewis Research Center, a powerful anal-
ysis model, the ROCket Combustor Interactive Design (ROCCID) , which combines
several of the existing models into a single interactive design methodology. ROCCID
predicts performance as well as combustion stability characteristics for the liquid engine
combustors. )

Aerojet has been successful in developing large scale engines using
subscale testing as a design database. The subscale engine is sized so that the 1T
instability mode frequency corresponds to the fullscale 3T mode frequency. The 3T
fullscale instability mode represents the practical upper limit of stability development
risk. This sizing results in a subscale diameter which is 43% of the fullscale diameter. In
addition, fullsize injection elements were used for the subscale injector to duplicate the
mixing and performance response of the fullsize injector.

The fullsize combustion chamber was proposed as an ablative design
to minimize cost and maximize performance for an expendable engine. Silica phenolic
was the chosen material as it has shown superior performance up to 3500 °F in past
programs.

Steady-state heat loads and adiabatic gas temperatures were deter-
mined during subscale testing to assist in the design of the fullscale ablative compo-
nents. Since ablative chambers make high frequency stability data acquisition difficult, a
steel "heat-sink" chamber was chosen for subscale testing. The steel chamber allows

RAPTGO104.116-9 Ovd 727192



more accurate instrumentation to measure both high frequency pressures as well as
static pressures and temperatures at the gas wall. Fuel film cooling (FFC) of the cham-
ber wall served two purposes; cooling of the steel wall for longer test duration and
determination of FFC effectiveness for use in the fullscale design which uses FFC to
lower wall temperature and therefore extend ablative life.

Testing of subscale hardware sought to obtain several types of opera-
tional data. Data on combustion stability, modular injector durability, film cooling effec-
tiveness and face temperatures were equal in importance to the engine performance
data. Measurement of acoustic cavity gas temperatures allows determination of cavity
sound speed and predictions of fullscale stability. Heat flux measurements provide data
on film cooling efficiency as well as provide data for chamber design. Testing was
divided into discrete blocks to prioritize tests according to the testing objectives. After
initial start-up, stability data was most important, followed by film cooling and perfor-
mance at other operating points. Test logic is discussed in more detail in the Test
Prediction and Results section. The following table lists the expected outputs for each of
the engine parameters measured.

Parameter Measured Desired Qutput
High frequency chamber pressure Instability mode, magnitude
Acoustic cavity temperature Instability damping characteristics
Chamber wall heat flux Film cooling effectiveness

Prediction of fuliscale film cooling req’'mts
Ablative liner performance predictions

Chamber pressure profile Combustion performance profile
Module temperature Module durability predictions
Faceplate temperature Ablative faceplate durability
Thrust, Propellant flowrates Injector performance

The primary goal of this program was to develop the technology for a
low-cost LOX/RP engine. To measure program success, the following goals were set:

« Establish a low-cost LOX/RP engine design which, through analy-
sis and study, is shown to provide the required reliability, perfor-
mance and producibility.

RPTA30104.116-1.0/% 5 I



+ Fabricate subscale hardware to demonstrate producibility and
conduct testing to demonstrate reliability and performance.

» Design and fabricate fullscale hardware, utilizing subscale test
results, which can be tested to verify readiness for flight engine
development.

In addition to the design, fabrication and test tasks, two other tasks
were designed to supplement the development of low-cost pressure fed technology.

Ablative Versus Regen Analysis - This study evaluated the benefits of

an ablative approach versus a regeneratively cooled approach to a low cost engine. The
study predicted coolant pressure drops in a regeneratively cooled (tube bundle) cham-
ber with and without the effects of coking. The study was suspended in favor of concur-
rent ALS studies on regen cooled chambers and the Ablative Materials Study described
below. The study results are reported in the March 1990 Technical Progress Report-7.

Ablative Materials Study - A thorough study of available ablative mate-

rials and fabrication techniques was performed to determine the low-cost alternatives to
a regen chamber. A new approach using quartz phenolic materials and a 3D bfaiding
method was identified as a weight and cost saving chamber fabrication technique.
Numerous material tests were conducted to establish a firm database for future devel-
opment. The complete results are reported in the June 1990 Technical Progress Report-
10.

1.4 BUDGET AND SCHEDULE

The program was initiated as a $6.2 M program which included both subscale
and fullscale design and fabrication. In late 1990, scope was changed to delete the
remaining fullscale design and fabrication, as well as a test stand dynamic analysis task.
The remaining program value was approximately $3.8M.

Monthly budget reports and evaluations were made to NASA-MSFC to pre-
sent program status. Figure 1.4.1 shows project cost performance relative to budget. All
required tasks were completed within budget.
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The program was onginally scheduled as a 24 months but was modified by
directive in 1989 to a 28 month program. The final schedule and progress is docu-
mented in Figure 1.4.2.
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2.0 BRESULTS, CONCLUSIONS AND RECOMMENDATIONS

The overall program was very successful from definition of the fullscale design
through the subscale test conclusions. Technology for the development of a fullscale
low cost, pressure fed engine is now in place. The innovative low-cost modular injec-
tor/ablative faceplate design demonstrated expected performance and was very
durable. The quality and quantity of test data obtained exceeded expectations and has
laid a firm foundation for future low-cost LOX/RP engine development.

2.1 METHODOLOGY CONFIRMED

A new computer model was used to predict engine performance and high-fre-
quency stability. The ROCket Combustor Interactive Design (ROCCID) program was
used to analyze instability operating modes and was also used to modify the chamber
acoustics to eliminate instabilities. Confirmation of this methodology is a significant step
forward for the development of LOX/RP engines.

2.2 LARGE SCALE APPLICABILITY

Success in analyzing, measuring and correcting instability modes in this
development program allows the program to move forward into fullscale design with
confidence. Test data obtained enables us to confidently predict fullscale engine per-
formance, requirements for acoustic damping devices, chamber wall cooling require-
ments and materials selection. Knowledge of acoustic cavity effects allows us to begin
sizing the injector depth and calculating component weights for the fullscale engine. As
shown in figure 2.2.1, the modular concept facilitates engine sizing for a range of thrust
levels. The modular concept can also reduce production costs significantly through the
use of mass-production techniques. All these factors combine to indicate a promising
application for reliable, low cost and efficient first stage/booster propulsion.

2.2.1 Subscale Testing Results and Conclusions

The goal of this program was to develop the technology for pressure
fed engines by resolving design issues through subscale testing. This testing was very
successful in resolving many of these design issues with test data. The most critical
issues and their resolutions are described below.

RPTGO104.116-2.01 1792
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2.2.1.1 Fullscale Design will Require Only Simple Damping
Devices for Stable Operation

The most important issue requiring resolution was the stabil-
ity of LOX / RP engines, which have a reputation for being difficult to throttie and
unstable using fine injection patterns. Demonstrated stability is an essential step in the
development of a new engine technology. The plan was to demonstrate stability on a
subscale level which could be correlated to the full-scale engine using proven scaling
techniques.

The subscale engine was stable at all operating points
tested. Artificial perturbation of the combustion drove some instabilities, all in the 1T
(first tangential) mode. A bituned acoustic cavity successfully damped the instabilities,
and the engine was dynamically stable at the conclusion of testing.

This result indicates that stable operation in the fullscale
configuration will be achievable and will require only acoustic cavity damping for the 1T
mode. This elimination of the need for higher-order mode damping (baffles, etc.) will
significantly reduce complexity and cost of the fullscale design.

2.2.1.2 Ablative Chamber / Nozzle will Meet Design
Requirements

The full-scale design employs an ablative lined chamber and
nozzle for economy and performance. The ablative material chosen was silica phenolic
due to its low cost and past success in LOX/RP engines in short duration applications.
Verification of its suitability for flight application ( approximately 150 seconds duration)
was required.

Measurement of gas-side temperatures during subscale
testing was performed to predict full-scale temperatures during a long duration burn.
Temperatures were measured with varying chamber pressure, mixture ratio and film
coolant rate to establish the effect of each on ablative performance. Although tests were
of short duration, thermal data indicated that steady-state temperatures had been
achieved.

RPT/AG0104.116-2.002 1 2 782



Maximum gas-side temperatures measured were 2200-2300
°F as discussed in Section 5.6. Silica phenolic is capable of sustained temperatures in
the 3500-4000 °F range while exhibiting negligible erosion. Test results indicate that sil-
ica phenolic will withstand chamber conditions for the full scale design. Test data has
indicated that the silica phenolic lined chamber/nozzle will perform well for the full scale
engine. However, thorough testing of an ablative assembly, either subscale or full scale,
is required to confirm design predictions

2.2.1.3 Copper Module / Ablative Face Injector Design is
Suitable for LOX/RP Application

The use of an ablative material on the injector face is an
unusual approach for a liquid engine. Face heat flux can vary widely depending on the
injection element geometry, spacing, injection velocities, recirculation of propellants and
other factors. Verification of face heat flux was required to confirm the ablative faceplate
design.

Direct measurement of the face heat flux was accomplished
with face mounted thermocouples, both on the modules and by surface temperature
measurements in the ablative area. Test data indicated maximum module/surface
temperatures, for the nominal operating condition, in the 700-800 °F range. These
temperatures are below the maximum 1100°F copper maximum temperature and far
below ablative maximums. These measurements are confirmed by visual effects on the
injector face, which showed negligible erosion after nominal tests. Nearly all mod-
ule/faceplate erosion occurred during high Pc (1000 psia) tests where heat flux is con-
siderably higher than at the nominal Pc of 720 psia.

2.2.2 Fuil-scale Design Concept

The successful subscale testing resulted in very few changes in the
full-scale preliminary design generated at the beginning of the program. The modular
concept for the injector was a proven success. The ablative chamber/nozzle design is
predicted sound by test results, as is the ablative faceplate. The inherent stability of the
engine will result in a shorter acoustic cavity requirement, which will shorten the injector
and significantly reduce weight. The demonstrated low chug point (<350 psia) indicates
that this engine will be highly throttieable. A preliminary flight configuration is shown

RPTAGO104.116-2.0/3 mme
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below without regard to engine size. It is expected that this low-cost concept could be
adapted to any reasonable engine size.

Ablative lined ,
Fuel Manifold steel shell chamber

Modular Injector

LOX Dome

® ){ | \ )/

Ablative Faceplate

Ablative Nozzle

223 Development Requirements

This engine will require limited development work when it is scaled up
to its full-scale configuration. The following characteristics have either been predicted
with high confidence or have a demonstrated database. All are considered to be low risk
development items.

(1) Verification of ablative performance under long duration testing.
Ablative liners and faceplates must be tested long duration to
measure and verify ablation rates.

(2) Demonstrate injector characteristics at full scale. Full scale testing
must be performed to size acoustic damping devices and to con-
firm stability and performance.

(3) Demonstrate fuel film cooling performance at the full-scale size.
Confirm that film cooling can be tailored to match injector mixing
patterns.

RPTAGO104.116-2.0¢4 72792
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2.3 RECOMMENDATIONS

This NASA-MSFC sponsored program has successfully developed the tech-
nology for a low-cost LOX/ RP engine. Using the design and production approaches
developed in this program, very simple and low cost LOX/RP thrust chamber assem-
blies (TCAs) can be developed at minimum risk.

By minimizing pressures across the injector face, this TCA design is not only
suitable for pressure-fed applications (as originally intended) but is also attractive for
pump-fed engines where it's low pressure requirements will reduce demands on the tur-
bomachinery.

The modular injector is readily adapted to a range of engine sizes. For
example, by adding one additional module row, and retaining the present module con-
figuration and density, an engine in the 300 to 400,000 Ib thrust class is feasible (as
shown in Figure 2.2.1). This engine would be directly applicable for upgrading the
existing U.S. expendable launch vehicle (ELV) fleet, offering substantially lower propul-
sion costs, a throttleable propulsion system, and performance improvements. It is
understood that ELV upgrade is becoming a national priority.

It is recommended that serious consideration be given to exercising the
existing contract option to proceed with the design and fabrication of a large scale TCA
which would be tested at NASA-MSFC. Depending on NASA priorities, this TCA could
be sized for a large shuttle-compatible liquid rocket booster (750,000 Ib thrust) as origi-
nally planned, or be matched to the requirement for upgrading the U.S. ELV fleet (300-
400,000 Ib thrust). The low cost technology developed in this program is ready to meet
either requirement.

RPTAG0104.118-2.008
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3.0 HARDWARE DESIGN
3.1 REQUIREMENTS AND CONCEPT SELECTION

The groundrules for this hardware specified that it must be capable of
obtaining the data necessary to support development of a pressure fed engine. The
hardware was required to simulate, at a subscale level, the approach to be used in the
fullscale design.

Selection of a design concept began immediately with the establishment of

program requirements. These requirements , in the order of importance, were as fol-
lows:

«  Stability and Compatibility (Reliability)

»  Low Cost

. Medium Performance ( ~95% C* efficiency)

. Minimum Injector Pressure Drop (1000 psia Inlet Pressure Goal)
«  Throttle Capability ( to 65%)

. Low Weight

Element selection was the first task in determining the engine configuration.
Previous LOX / RP-1 programs performed by Aerojet (ref 1) have indicated that the
Oxygen-Fuel-Oxygen (OFO) triplet element is the highest performing and one of the
lower cost elements . It also provides a good stability margin when used with large ori-
fice diameters. These facts, along with a well documented history, led to the selection of
the large orifice O-F-O triplet element.

The next task was to size the full scale engine. With thrust and C* efficiency
specified as requirements, a trade study between performance and stability margin was
performed which established the chamber diameter at 44 inches. Injection mixing per-
formance dictated an L' (face to throat) distance of 40 inches. Element quantity and
spacing were determined from the thrust and element design ready determined. The
very coarse element spacing resulted in large uncooled face areas. These areas could
have been cooled using several common face cooling techniques, but this approach did
not satisfy the requirement for low cost. We chose to group the elements in discrete
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modules and to fill the areas between the modules with a heat resistant material. Using
this approach, the modules would be self-cooling and the remainder of the face would
be protected.

Chamber requirements for low cost and expandability led to the selection of
an ablative design. Ablative liners are much less expensive than cooled designs and
meet the requirements for an expendable engine. The chamber would be either a steel
shell with ablative liner or an entirely composite structure utilizing the latest tape-
wrapping techniques. In either case, film cooling of the wall would be required to extend
the life of the liner to match the mission profile. The subscale chamber would be
required to measure film cooling effectiveness with extensive instrumentation.
Temperature measurement at the chamber wall is difficult with ablative chambers due to
the flow of ablating material along the wall. High frequency pressure measurements are
also difficult due to the necessity of mounting the transducer sensing element close to
the wall. A steel "heat sink" chamber was proposed for the subscale testing to achieve
more reliable data at a lower cost.

Combustion stability was the primary operational goal of the engine design.
The hardware had to be capable of modification to adjust to yet to be determined com-
bustion characteristics. The acoustic cavity, placed near the injector face, is a reliable
method of changing chamber acoustics to coincide with combustion response. Several
different size resonator blocks allowed for change in the cavity depth, and therefore its
damping characteristics. This enabled "tuning” the chamber during testing.

Full-scale requirements for fuel film cooling (FFC) of the chamber wall
required that extensive data be obtained on FFC effectiveness during subscale testing.
The heat sink chamber facilitated the measurements. The ability to change to rate of
FFC at a constant core combustion MR was required to properly characterize the FFC
effects. The FFC circuit was manifolded separately from the fuel injection circuit to
achieve independent control of FFC flow. A schematic of the hardware concept is
shown in Figure 3.1.1.

3.1.1 Design Parameters

The subscale design was based on the following parameters to
ensure design integrity and performance

RPT/G0104.116-3.0-3 52 17 2192
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+ Simulate full-scale characteristics wherever possible except that
the chamber diameter will be subscale to reduce testing costs.

+ Utilize conventional materials and machining techniques wherever
possible to minimize costs.

« Follow established stress and cycle life safety factors for low risk
testing.

3.2 INJECTOR DESIGN

The pressure fed concept is designed to be a reliable and low cost engine.
Another requirement is to minimize pressure drop across the injector to minimize tank
pressures and weights. Reliability translates into stable operation with adequate stability
safety margins.

For LOX/RP-1, the O-F-O triplet injection element is one of the highest per-
forming elements (ref 1) . A coarse O-F-O element also has a low combustion response
frequency as shown in Figure 3.2.1, which simplifies damping devices. In addition, for
LOX/RP -1 combustion, the optimum oxidizer-to-fuel ratio is near 3:1 which, when com-
bined with a density ratio of 1.4:1, results in an injection area ratio of 2:1, ideal for the O-
F-O triplet with equal orifice diameters.

As a comparison, the like doublet element, used in the F-1 engine, can
achieve high performance only with fine injection patterns. The fine injection pattern has
a high frequency sensitivity that requires elaborate damping devices . In the F-1 engine
development, persistent stability problems resuited in an enlargement of the injection
orifices and a subsequent loss in performance, to about 91% combustion efficiency.

The challenge of this design was to design an injector with a 19-inch diameter
utilizing the O-F-O triplet element for performance, a coarse pattern for stability, and low
cost features. These requirements presented a design conflict. The large face area and
coarse pattern dictated a very low element density. Typical injector element densities
are on the order of 2 to 3 elements per sg-in. The pressure fed design requires a density
of 0.5 elements per sg-in. This low density results in a large distance between elements
which must be cooled to prevent face erosion problems. Cooling of the injector face is
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not a technical challenge as there are several ways to cool injector faces; active face
bleed of propellants, circulation of propellants under the face surface, transpiration
cooling, etc. However, active cooling of the injector-face increases the cost of the injec-
tor significantly. Additional circulation of propellants for cooling purposes also increases
the pressure drop through the injector. Both of these situations are in conflict with the
design requirements.

The solution is to group the injection elements together and place them in
copper modules for excellent heat conduction and face cooling. The areas between the
modules are filled with an ablative material which has very high resistance to heat. In
this way, critical injection areas are cooled and other areas are protected. This
arrangement is shown below.

Ablative

Faceplate

LOX
Flow

Injector
Modules

Fuel
Flow

The modular approach introduces fabrication and cost advantages for the
injector. A major risk in the fabrication of standard injectors is the hundreds of orifices
that must be drilled to precise angles and depths. A single mis-driiled orifice can result
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in a very expensive repair procedure or even rejection of the entire injector. The modu-
lar approach permits quantity production of the modules as discrete units which are
individually inspected and accepted before assembly into the injector body.

The module size used in the subscale injector is identical to the fullscale con-
figuration. This properly duplicates injection atomization and vaporization characteristics
and avoids interpolation of data for the fullscale design. It also provides manutacturing
data on actual module cost for the fullscale engine. The 4 inch module length was used
to allow for a very long acoustic cavity to provide a wide damping range for testing. The
actual cavity length will likely be much shorter, and the modules will protrude from the
core assembly only a short distance in the actual full-scale design.

The LOX Inlet forms the back of the injector and is straightforward in design.
A flat closure plate of CRES 304L was chosen for simplicity and low cost. The plate is
penetrated by the inlet tube, which is 6 inch schedule 160 CRES pipe. A plenum is
formed on the back side, as shown in figure 3.2.2, provides increased volume to slow
the flow and distribute it evenly around the circular area. This plenum is formed with a
1.0 inch 304L plate which has 147 0.75 inch holes for flow distribution. A filter plate,
made of perforated CRES 304L plate precedes the 1.0 inch plate and is brazed to it.

The LOX inlet also contains provisions for instrumentation to monitor propel-
lant condition. One each temperature, pressure and high frequency pressure port is
provided on the inlet tube. Lifting provisions, rated to 2500 Ibs each, are provided at two
places and are capable of lifting the entire injector after assembly or the injector end of
the entire TCA when assembled. The calculated weight of the LOX inlet is 950 Ibs.

The core assembly, as the name implies, is the heart of the injector and
contains the injector modules as well as the face instrumentation. The core is
assembled between the LOX inlet and the manifold.

The injector modules provide the flow passages for both the propellants and
also contain the final injection orifices. They are constructed from copper alloy which
has approximately 17% Zirconium added to increase tensile strength to approximately
24,000 psi at 70° F. Copper was selected for the modules so that the heat on the mod-
ule face could be conducted rapidly away to the flowing propellants.
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Each module contains five O-F-O triplet injection elements, as shown below.
The design of each element is identical. The LOX flows through two 0.375 inch down-
comers , which travel the length of the module, to an 30° angled injection orifice of 0.241
diameter. The impingement angle and position is tightly controlled to the fuel orifice
within 0.005 inch in position. This is necessary to ensure good impingement and vapor-
ization. Fuel is fed from a rectangular port in the side of the module and down through a
single 0.241 inch injection orifice. To improve intra-element mixing, the modules are
staggered by 0.250 inch as shown below.

O-F-0

Triplet
Element

LOX
Iniets

End View

Inlet Eiements staggered to

reduce intra-element
Injector Module interference

External features of each module include two brazing surfaces which form the
bond to the core weldment. The top joint, an interpropellant joint, is designed with a
step which provides a positive contact between the module and the weldment, and
reduces the wetted volume that the braze alloy must occupy. This design practically
eliminates porosity in the brazed joint.

The core assembly also contains provisions for face thermocouples to mea-
sure module temperature as well as the face surface temperature between the modules.
The thermocouple leads pass through the flange, along the weldment body, and up to
the face. The module thermocouples are attached directly to the module by placing the
thermocouple tip in a copper block and staking the block into a groove cut in the side of
the module so that the block is flush with the injector face, as shown in Figure 3.2.3.
Face temperature thermocouples are mounted in a holder, also shown in Figure 3.2.3.
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The fuel manifold supplies fuel from the injector periphery to the modules
through a circular plenum. This manifold also contains an integral film-cooling injection
ring which is fed from a separate circular manifold. This allows different film-cooling
rates for specific engine operating points.

The design of the manifold is straightforward, directing fuel through the inlet
connection, around the circular plenum, through a diffuser and filter plate combination
and finally through radial passages to the core assembly. The filter / diffuser acts to dis-
tribute the flow evenly around the periphery and to trap any large particles that may be
present.

The testing requirement for the independent control of the fuel film cooling
requires a separate circuit and injection point from the fuel orifices. Injection on the face
itself is not practical due to the modular configuration of the injector. The design chal-
lenge here was to pass the film coolant about 5 inches to the face surface without inter-
fering with the modular injection. A circular ring was designed with small feed channels
and 254 injection orifices at the end, as shown in Figure 3.2.4. The channels are formed
by slotting the OD of an inner ring and brazing an outer solid ring over the inner ring to
close out the channels. The injection orifices are then EDM'ed into the end.

The manifold contains only basic instrumentation ports for fuel temperature
and pressure measurements. Two drains are provided at the low point to drain the
manifolds between tests if necessary.

3.2.1 Ablative Faceplate

The modular design of this injector results in an open area between
the modules which must be filled to prevent hot gas recirculation and protect leading
edges of the modules. The open area is filled with an ablative material due to its low
cost and high heat resistance . The material chosen for the faceplate is silica phenolic,
which has demonstrated very low ablation rates in LOX / RP engines. For the faceplate,
a compression molded design was chosen over a tape-wrapped construction to provide
equal strength in all directions and avoid any lamination orientation problems. This fab-
rication method is also the lowest cost of the candidate composite techniques. Openings
for the modules and attachment screws are machined. In production, these holes would
likely be molded into the part. For the small quantity (3) being produced, the extra
tooling costs required to do this were not justified .
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The primary data base for silica phenolic performance was developed
in the late 1970's during Aerojet's M-1 program. This 1.5 million Ib thrust engine utilized
a silica phenolic chamber liner during development testing to reduce costs. Although the
engine used LOX/Hydrogen as its propellants, the significant oxidizing combustion
products (which contribute significantly to ablative recession rates) are slightly more
oxidizing than LOX/RP products. Also, the chamber pressure (another significant
recession factor) for this engine was 1040 psia, higher than the 720 psia pressure-fed
value. The M-1 engine was tested for 144 sec on several liners and exhibited low abla-
tive recession rates of about 2 mils/sec. This data, combined with several other devel-
opment program results, gives high confidence that silica phenolic liners and faceplates
will provide the required performance for this application.

Ablative chambers, nozzle extensions and other components have
been manufactured on a production basis for over 15 years at Aerojet. The ablative and
strength characteristics are well documented, as well as the manufacturing processes
that produce high quality composite parts with few rejects.

3.3 CHAMBER DESIGN

The chamber is a steel shell design to facilitate installation of high-frequency
pressure transducers and thermocouples. An ablative liner configuration would make
this data more difficult to obtain and would increase cost significantly.

The chamber was designed to be constructed by rolling and welding CRES
304L plate. This method is much cheaper than machining from a solid billet. The
chambers long length (64 inches) and weight (1650 lbs) made the solid billet approach
cost prohibitive. The chamber walls are approximately 1.65 inches thick. This thickness
is determined so that, during a specified firing duration, there will be sufficient ambient
temperature steel to contain the chamber pressures. This guideline is very conservative,
but allows for testing variations and increased chamber life. The chamber configuration
is shown below.
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'47 L' LENGTH = 40 in

f

THROAT
13.75 in

EXPANSION
RATIO = 3.0

L OVERALL LENGTH
64 in

The chamber is designed at a subscale diameter to properly simulate the 1T/
3T relationship described in the requirements section. The combustion section diameter
is 19 inches. The combustion length, L', is selected due to the fact that the injector
modules are full size, and the vaporization distance dictates the combustion length.
Consequently, the combustion section is stretched slightly and has a resulting conver-
gence angle of 6 degrees.

CONTRACTION RATIO = 2.0

The chamber has an acoustic cavity built into the front section as a stability
aid. The cavity is approximately 5 inches long and 0.75 inch wide as shown below.
Provisions for mounting tuning devices, or resonators, are included to allow adjustment
of the cavity depth during testing.
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The chamber also has extensive provisions for instrumentation. There are 15
pressure ports and 23 thermocouple ports which extend along the length of the chamber
at varying radial locations. These locations were selected to provide accurate informa-
tion on film cooling effects and the axial combustion profile of the chamber. In addition,
5 high frequency pressure ports measure the combustion response and detect any
instabilities. Instrumentation locations are shown in Figure 3.2.5.

The chamber also contains two ports for combustion stability bombs. These
ports are approximately 5 inches from the injector tace and oriented radially at 20 and
200 degrees. The upper port is a radial port, firing to the centerline of the chamber
(across the injector face). The second port is a tangential port, firing across the bottom
of the chamber. These two port configurations allow different ways of perturbing the
combustion to better quantify combustion response.

3.4 INSTRUMENTATION

3.4.1 Temperature Measurement

Two types of thermocouples were used in subscale testing. Standard
Type T junction thermocouples were used to measure the copper module face tempera-
tures and co-axial Type K thermocouples measured the ablative injector face thermal
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environment and steel chamber wall temperature. Figure 3.2.5 shows the thermocouple
locations in both the injector face and along the chamber wall.

Type T thermocouples were used on the copper modules in four loca-
tions, on both inner and outer row modules. These thermocouples provided the temp-
erature histories on the outer edge of the front surface of a representative outer row
module and an inner row module.

Type K thermocouples (TJ4 and TJ5) were mounted on steel supports
which placed the tip of the thermocouple flush with the gas side surface and allowed
surface heat flux to be inferred from the surface temperature history.

Chamber instrumentation consisted of two rows of 7 co-axial Type K
thermocouples mounted at several axial locations, as shown in Figure 3.2.5, in the
chamber and divergent section. Each row was either in line with an outer row module
(TC1-7) or in between two outer modules (TC8-14) directly outboard of an inner row
module. Each thermocouple was mounted flush with the gas side chamber wall surface.
This approach directly measured gas side wall surface temperature enabling the surface
heat flux to be inferred.

3.4.2 Pressure Measurement

Pressure measurements were divided into two distinct categories; low
and high frequency. Low frequency transducers are used to measure most supply, dif-
ferential, and chamber pressures for balance and performance calculations. The high
frequency transducers are helium-cooled Kistler units designed to measure very rapid
changes in pressure, and are used to determine combustion stability modes and ampli-
tudes. Locations of the pressure instrumentation is shown in Figure 3.2.5.

3.5 ANCILLARY HARDWARE

3.5.1 Bomb Components

The combustion stability bomb components were designed on another
program and have performed well in other tests of similar engines. The components,
shown below, include a plug assembly which mounts the remaining components. The
detonator ( explosive charge) assembly is placed inside a teflon cap which is screwed
into the inner sleeve. The inner sleeve is made from high-strength A-286 stainless steel
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and directs the charge inward into the chamber instead of allowing it to expand outward
and potentially damaging the surrounding area. This is especially important with ablative
chambers which can be easily damaged by the blast.

Bomb Port Assembly

SEAL AR10103-025AH
BACKUP RING AR190154-025-A

_ SHIM -10,-11,-12
CAP -14
[/ “‘—l DETONATCR
DETONATOR LEADS
ASSY INNER SLEEVE
1202980 DY

OUTER SLEEVE -16
END PLATE -16 NOTE : ALL DASH NUMBERS REFER NUT -7
TO DWG 1202717

The inner sleeve is then screwed into the plug and the detonator
leads brought out through the end fittings. The outer sleeve is made from carbon phe-
nolic material and is designed to protect the detonator from the combustion chamber
heat load and prevent pre-ignition of the bomb. The outer sleeve is placed over the
inner sleeve and the entire assembly is screwed into the chamber bombport. Shims are
provided to allow adjustment of the outer sleeve to install it flush with the chamber wall.
For each bombed test, all components except the plug and nut will be consumed and
require replacement.

3.5.2 Resonators

Resonators were designed to fit into the chamber acoustic cavity to
vary cavity depth. They are required to fine tune the cavity, and the resulting chamber
acoustic response, to reduce or eliminate instabilities. Three different resonator configu-
rations were designed; one for a full cavity , one to eliminate the cavity and several
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blanks to be machined after test data determined the optimum cavity depth. The
resonators are boited into the front end of the chamber and are made of CRES 304L for
low cost.

3.5.3 Proof Pi r

A proof plate and adapter were designed to assist in proof and leak
testing. The proof plate is bolted to the end of the chamber and is rated to approximately
2000 psi proof pressure. The adapter , also rated at 2000 psi, can replace the chamber
if it is desired to proof the injector without the chamber installed.
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4.0 FABRICATION

Fabrication of the hardware was accomplished from June through December 1990.
Of the six major components, the LOX inlet, core, manifold and chamber were made by
a single vendor, Martinez and Turek, in Southern California. The resonator rings were
made by a local vendor, Harris Machine and the ablative faceplate was made by
Aerojet. Cleaning, final assembly and proof testing were performed by Aerojet.

4.1 INJECTOR
4.1.1 LOXInlet

Fabrication of the LOX Inlet was a fairly straightforward process. The
main body and plenum ring and distribution plate were all made from CRES 304L
plate. The Inlet pipe is Schedule 160 CRES pipe with a forged Greylock standard hub
welded on the end. All weld joints were TIG welded except for the plenum to body weld
which utilized electron-beam welding to reduce warping.

The distribution plate incorporates a filter to screen large particles
from the LOX stream and to further diffuse the LOX flow. This filter is made from CRES
304L perforated plate with 0.062 inch dia staggered holes. The filter is attached to the
front side of the distribution plate by brazing. In any brazing operation, the most impor-
tant considerations are cleanliness and proper fit between components. These parts
were extensively cleaned and a fixture built to compress the items during brazing. The
braze alloy was copper, chosen for its excellent fill properties, and brazing temperature
was approximately 1700°F. The faceplate and screen are shown after brazing in Figure
4.1.1. After brazing, the distribution plate was ready for welding into the main body. This
was an EB weld and resulted in the completed assembly, shown in Figure 4.1.2.

4.1.2 Core Assembly

The core was the most complex of the components. It consisted of a
CRES 304L body, composed of two 1" thick plates which were welded into a circular
housing, and twelve copper injector modules which were brazed into the housing.

The core body started as a weldment 1206093 as shown in Figure
4.1.3. The weldment was made from plate stock, which in some cases was rolled and
welded. The weldment was stress relieved before final machining. Machining of the
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Figure 4.1.1 Inlet Plate and Screen After Brazing
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Figure 4.1.2 Completed LOX Inlet Assembly
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Figure 4.1.3 Core Assembly Weldment
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module bores was an important process, because the fit between the modules and their
bores is critical for a good braze. The module bores were machined in two parallel
plates with a concentricity of 0.005 in on the diameter.

The injector modules are constructed from Zirconium-Copper (.20%
Zirconium) which has higher strength than OHFC copper. The modules were machined
from 4.0 inches round barstock. Machining of the injection orifices, 0.241 and 0.380
inch holes, required a positional accuracy of 0.005 inch in their 7.5 inch length to
ensure that they would intersect properly at the injection end. After some development
of the machining operation, all of the modules were completed without error. The com-
pleted modules are shown in Figure 4.1.4.

Brazing of the modules to the core weldment required extensive setup
and coordination, due to the size of the core and modules and to the braze preparation
involved. The modules were prepared for brazing and inserted into the core, as shown
in Figure 4.1.5. Cleanliness was of extreme importance, and components were con-
stantly cleaned with alcohol.

Once the modules were inserted, a circle of braze alloy in wire form
was placed above each braze joint and secured with special braze-compatible adhe-
sive. The assembly was then instrumented and placed in the evacuated braze chamber.
Brazing was performed at approximately 1750 ° F. Following cooling of the assembly, a
leak check was made of each braze joint by pressurizing the fuel cavity with nitrogen to
S50 psi. This required special fixturing and plugs to seal both the injection orifices and the
side inlets. Three small leaks were noted during this test. A leak sealing procedure ,
devised prior to fabrication , utilized a braze alloy that meits at a slightly lower tempera-
ture than the original alloy. The alloy was placed on the leaking joints and the assembly
was returned to the furnace. After the repair braze, the leak check was repeated con-
firming that the leaks had been successfully repaired.

The completed body was then placed in an assembly stand for the
installation of thermocouples. The thermocouples were designed to measure both
copper medule temperature and the gas temperature at the face between modules.
Four thermocouples were installed on the copper modules and two were mounted in
support brackets . The thermocouple leads were potted in the passages with an
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epoxy filler to form a seal against the fuel manifold pressure. The sensing ends of the
module thermocouples were staked to the module body using a copper plug as shown
in Figure 4.1.6. Face thermocouples were mounted in support brackets, Figure 4.1.7,
and the leads fed through the manifold passages and potted . A leak check was
performed using the outside fitting to verify the seal between fuel pressure and
atmosphere. No leaks were found.

4.1.3 Manifold Assembly

The manifold assembly was constructed entirely of CRES 304L. It
consisted of several different components. The manifold actually contained two sepa-
rate circuits, the fuel supply circuit and the fuel film cooling (FFC) circuit. A drawing of
the manifold circuits is shown in Figure 3.2.4.

The manifold body was machined from a CRES billet and was
straightforward in construction. Each manifold circuit had two circular strips welded to
the perimeter as shown in Figure 4.1.8. The first strip, the distribution plate, controlled
flow from the single inlet so that it would be distributed evenly around the perimeter and
feed all modules. It was perforated with 0.38 inch holes and skip welded around the |
perimeter. The second strip served as a filter and consisted of perforated plate with
0.062 inch holes. This strip was welded on top of the distribution plate.

The FFC injection ring moved the FFC injection point to the face of
the injector as shown in Figure 3.2.4. This required a ring with fine fuel passages
almost 5 inches deep. Drilling of the 225 injection holes ( with diameters as small as
0.042 inch) at that depth would have been cost prohibitive. The ring was constructed by
machining an inner slotted ring and an outer solid ring and brazing them together as
shown in Figure 4.1.9. The injection holes were then EDM'ed the short distance to the
fuel passages. The completed ring was then attached to the manifold body by EB
welding.

Each manifold circuit required an outer closure torus. The fuel circuit
torus was constructed as one piece and electron-beam welded to the body. The FFC
torus was installed as two pieces due to weld access and inspectability requirements.
The inner half was electron-beam welded first and the weld was inspected. The second
half was then welded on two perimeters. Inlet fittings were attached by standard TIG
welding.

RPTAGO104.116-4.0/4.33 42 22
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Attachment and machining of instrumentation ports and fittings com-
pleted the manifold assembly. The completed assembly weighed approximately 900 Ibs.

4.1.4 Ablative Faceplate

The ablative faceplate was molded and machined at Aerojet in the
solid rocket motor manufacturing area which has extensive experience with ablative
materials for nozzles and motor cases. Faceplates were molded and machined rather
than molded to net shape, as would be done in production. The small quantity (3 face-
plates) did not justify the construction of relatively expensive tooling.

Material for the faceplate was Fiberites MX-2600 Silica-Phenolic in the
form of chopped 1/2-inch squares. This material was easy to use and moid. The 19 inch
blank was molded using a vertical press which incorporated heated platens to maintain
the proper molding temperature. The material was molded at an approximate pressure
of 2200 psi and temperature of 250°F. The molding and curing process required approx-
imately eight hours to complete. Figure 4.1.10 shows the loading of raw material into
the mold. ’

Machining of the molded blank was accomplished using special dia-
mond-tipped cutting tools as shown in Figure 4.1.11. The faceplate bores would likely
be net-molded into the part in production quantities. The completed faceplate is shown
in Figure 4.1.12.

4.2 CHAMBER

The chamber was constructed of CRES 304L plate which was rolled and
welded for cost savings. The chambers large size (25 inches diameter and 64 inches
long) made machining from billet stock cost/schedule prohibitive. Local imperfections
inherent in welding were evaluated and judged to not be significant. Rolling of the 1.75
inches plate to tight diameters was not easily accomplished, but was successful after
some trial bends. Inspection of the welds revealed porosity as large as 0.19 inch in
some areas. Depending on the location and distance form the gas side wall, these

RPTA0104.118-4.004.38 46 72192
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imperfections were either repaired or accepted based on structural analysis. End
flanges were cut from plate and welded to the tubular structure. Machining of the welded
rough form was accomplished without incident.

The chamber assembly included several resonator rings of different lengths
to tune the acoustic cavity. These rings were constructed from CRES 304L and incorpo-
rated a flange to bolt them to the front section of the chamber. Several spare rings were
built so that they could be machined to the proper length after initial test results defined
the proper cavity "tune". The acoustic cavity and the resonator are shown schematically |
in Section 3.2..

Proof plates, adapter rings, and various miscellaneous hardware were also
constructed to support assembly and testing. These components were procured well in
advance of testing.

4.3 ENGINE ASSEMBLY

The engine was assembled at Aerojet in a clean area designed for hardware
assembly per drawing 1206083. Assembly procedures were created and followed
during the assembly process. The size of the hardware made handling difficult, some-
times requiring special lifting fixtures. A rolling assembly stand, shown in Figure 4.3.1
with the completed core assembly, was built which greatly assisted in the assembly pro-
Cess.

431 Cleaning

All components were cleaned to remove machining debris and oils per
ATC-STD-4940, Level 1000 (1000 micron particle size). Particle size requirements are
less severe than usual due to the large orifice diameters in the injector. In addition, all
surfaces contacting LOX were cleaned and verified to ATC-STD-4940, Level 200K ( for
Hydrocarbon cleanliness).

4.3.2 Assembly

The injector assembly was assembled by placing the manifold on the
assembly stand, dropping the core into it, and securing with temporary fasteners. The
boited units were then turned over, face instrumentation installed, and the leads secured
to the core body. The ablative faceplate was then installed and torqued to specifications.

RPT/G0104 1164.04.2% 2792
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Perimeter gaps and boltholes were filled with high-temperature RTV sealant. The injec-
tor was turned over, and the LOX inlet was bolted and torqued to the manifold/core
assembly to complete the injector.

The chamber was not attached to the injector until the injector had
been mounted on the test stand. This was done to make handling easier and to avoid
difficult propellant connections that would have to be made with the cumbersome unit.
The engine components are shown in Figure 4.3.2.

RPT/GO104 116404 37 52 92
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5.0 TEST PREDICTIONS AND RESULTS

5.1 TESTING PLAN

The test program objective was to obtain essential data for Low Cost LOX/
RP-1 engine technology. Data requirements included combustion stability data, perfor-
mance measurements at both on-design and off-design conditions, and thermal data for
material compatibility studies. The test plan ( Ref 2) organized testing into discrete
blocks to ensure that specific, organized objectives were met.

5.1.1 Block | - Initial Operation (3 tests)

The first block contained three tests, one for LOX/TEA-TEB ignition
and two tests for initial full Pc operation. These tests were performed to characterize
start /shutdown transients and ignition performance.

5.1.2 Block Il - Thermal / Performance (7 tests)

This block of testing had three purposes; verify engine operation and
performance at different operating points of Pc and MR, establish the correct rate of film
cooling by monitoring chamber wall temperature, and verify the ability of the combustion
stability bombs to provide adequate chamber overpressure.

5.1.3 Blocklil-

Block Il tests were crucial tests designed to determine the baseline
dynamic stability of the engine without damping devices. The acoustic cavity was
blocked off with the full resonator, and the combustion perturbed with bombs shortly
before programmed engine shutdown. By measuring stability of the engine without a
damping device, predictions of damping requirements for subsequent tests were made.

5.1.4 Block |V - Pc and MR Mapping (6 tests)

Block IV tests were designed to measure engine performance and
chamber wall temperatures with varying Pc and MR. Film coolant percentage was also
varied to quantify its effectiveness.
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5.1.5 Block V - Alternate Cavity (3 tests)

This block utilized an alternate cavity configuration designed from test
data from Block Il results. The effectiveness of the redesigned cavity was verified.

5.1.6 Block Vl- Durati

A long duration ( =9 seconds) test was scheduled to evaluate the
durability of the injector faceplate. Wall temperatures on the steel chamber prevented
this test.

5.2 TEST RESULTS

Testing was performed at Aerojets’ Test Area "E" in Sacramento, CA during
the period 16 October through 11 December 1991. A total of 32 tests were conducted,
completing all of the planned test objectives with the exception of the long-duration test.
During the 39 day testing period, approximately 17 days were consumed with hardware
adjustments and configuration changes. The 22 testing days were required for the 32
tests, giving an average frequency of 1.5 tests/day. On several days, three tests were
performed. This high test frequency can be credited to the folloWing:

. Careful planning of the test matrix required the minimum hardware and
test stand (propellant pressures) changes between tests.

. Redundant transducers for nearly every parameter minimized down time
for instrumentation. Throughout the test program, no significant data was
lost due to instrumentation malfunction.

+  The diligence of the test crew in preparing the stand and readying the
instrumentation minimized turn-around times.

Testing was conducted using established Aerojet policies and procedures for

testing and safety. Each engine firing followed practices developed over many years of
LOX/RP testing;

+  Atwo level engine start was employed to establish proper functioning of
components, valves and sensors before full thrust operation. At Level 1,
approximately 30% of full chamber pressure, critical flow and pressure

RPT/GO104.116-52/5.6 5 5 72192



"gates” must be met before the propellant valves were opened to their
full open position. Additional gates were employed at Level 2 to ensure
that the proper flow and pressures had been achieved.

« A combustion stability monitor (CSM) was used to detect instabilities and
automatically terminate operation and minimize hardware damage. This
system consisted of firing computer software which monitors a selected
high-frequency pressure transducer.

+  Test durations for this testing were relatively short { =1-2 seconds) due to
temperature limitations of the steel chamber. However, thermal and
engine performance data did reach steady-state values in this test dura-
tion.

. Axial thrust measurements were made for all tests. These provided more
accurate calculations of engine performance than traditional pres-
sure/area thrust calculations.

The first full chamber pressure (Pc) test, Test 2, ran stable and smooth for the
full planned duration. This early success is very unusual. It was due to the careful pre-
test calculations and transient analysis as well as the measurement of injector admit-
tance, filling times and ignition timing by the test crew. Figure 5.2.1 is a log of tests
performed and summarized results of each test.

Thermal tests in Block |l were conducted with the baseline acoustic cavity
configuration near the nominal operating point of 720 Pc and MR = 2.8. Several tests
were automatically terminated by excessive chamber wall temperature in the combus-
tion section. Fuel film cooling flow rate was increased to reduce wall temperature, but
little effect was realized. Testing continued but was interrupted to replace a faceplate
which sustained damage due to an assembly problem (discussed in section 5.6).
Although durations in this Block were very short (0.2-0.5 seconds), thermal and bomb
effectiveness data was successfully obtained.

Stability testing in Block Il showed no spontaneous instabilities. Every
bombed test was driven unstable, although some damped after 50-60 msec. Chamber
pressures to 1030 psia and MRs to 3.7 were tested. All instabilities in this Block were in
the 1T (first tangential) mode. This result confirmed the prediction that only simple

APTIG0104.116-52/5.6 56 12792
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acoustic damping devices would be required for the full scale design. Some face
damage was observed during the high Pc test in the form of copper loss on some of the
modules. It was decided to terminate stability testing after this test and proceed with the
next Block. '

Performance testing in Block IV operated the engine over a wide range of
conditions. A modified acoustic cavity, one with a 2 inch depth, was designed after ana-
lyzing results from Block | tests. This cavity improved the stability margin of the cham-
ber. Many tests around the nominal operating point were now dynamically (bombed)
stable. This Block of tests provided a wealth of performance and thermal data. After
Test 26, all performance and thermal objectives had been met, but some instabilities
were still occurring. A bituned acoustic cavity, discussed in detail in section 5.4.2, was
installed and dramatically improved damping around the nominal operating point.
Several tests were conducted and, with bomb overpressure of 40% Pc, the combustion
instability was quickly damped. During this testing, thrust levels over 200,000 Ibs were
achieved.

The hardware was exceptionally durable, and was still performing well at the
conclusion of testing. This result is commendable for a new design employing a unique
injector configuration. The detailed results of the test program will be reported in the
following sections:

. Performance Predictions and Results
+  Stability Predictions and Results

. Thermal Predictions and Results

. Hardware Durability

5.3 PERFORMANCE PREDICTIONS AND RESULTS

5.3.1 Hydraulic Predictions and Results

Hydraulic predictions were made during the design phase to deter-
mine test stand hydraulic/control parameters and instrumentation requirements.
Hydraulic analyses for the core and FFC circuits were performed by the calculation of
individual losses for each flow branch . Accurate determination of injector hydraulics is
essential for start transient predictions. Predicted values for the injector admittance
(similar to the inverse of the hydraulic resistance) are shown below.

APT/GO104.116:52/5.6 58 127192



Circuit Kw
Fuel 9.8 Ibm-in./sec-Vibf
Fuel Film Cooling (FFC) 1.9 Ibm-in./sec-Y1bf
Oxidizer 20.6 Ibm-in./sec-YIbf
5.3.1.1 Hydraulic Cold Flow

The subscale injector was cold flowed prior to hot fire to con-
firm the designed injector pressure drops and to establish balance requirements for the
fuel film coolant circuit. The oxidizer circuit and the fuel core circuit of the injector were
flowed using room temperature water flowing to 1 atmosphere back pressure. Supply
pressures were varied over a range from 20 to 65 psid to characterize hydraulic admit-
tance (Kw). Resulting Kw's are shown plotted versus the circuit pressure drop for both
the oxidizer and fuel in Figure 5.3.1. Predicted Kw values were within 4% of cold flow
measured values. The injector cold flow spray pattern was also checked visually and
was found to have no visual flow anomalies.

5.3.2 Combustion Predictions and Results

The ROCCID computer program, Ref 3, was used to predict the com-
bustion characteristics for the injector. The analysis assumed that 25% of the core flow
mixed with the 16% fuel film coolant periphery flow, which was the nominal predicted
film coolant required. A mixing efficiency parameter value of 0.85 Em was used for both
the core and barrier streams, resulting in a four-streamtube model. The atomization
length calculated by the model was reduced based on hot-fire test results from a previ-
ous LOX/RP program (Ref 1).

The predicted static combustion pressure profile is shown in Figure
5.3.2 along with a measured static pressure profile from hot fire Test 24. Close agree-
ment between predictions and test data, including the point at which the static pressure
initially drops ( indicating the start of combustion) confirms the assumption of short
atomization distance.

RPTAGO104.116-52/5.6 59 721192
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Predicted characteristic velocity, which is a measure of combustion
efficiency , versus both fuel film coolant percentage and core mixture ratio is shown in
Figure 5.3.3. Note that the highest combustion performance occurs at a MR of about
2.4 10 2.5. This prediction was confirmed by test data which also indicated highest
performance at an MR of 2.5, which will be discussed in the performance section.

Close correlation between the predicted combustion response and
measured response validates the analytical tools used for design of the injector.

5.3.3 Performance Predictions and Results

Injector efficiencies were predicted using the ROCCID program and
are shown plotted versus the overall injector mixture ratio in Figure 5.3.4. The C* and
energy release efficiency of an injector is a combination of vaporization and mixing effi-
ciencies as shown. The corresponding predicted delivered specific impulse is also
shown versus overall injector mixture ratio.

5.3.3.1 Performance Results Summary

Performance data was obtained for most of the 32 engine
firings. Three fuel film cooling rates were tested during hot fire; 15%, 22% and 27% of
core fuel flow. Chamber pressures fired fell into three distinct ranges of low, nominal
and high. The low range covered 350 to 500 psia, the nominal from 696 to 743 psia,
and the high range from 954 to 1033. These chamber pressure values are based on
the Pc-3 measurement which was located immediately downstream of the resonator
cavity lip. Figure 5.3.5 summarizes the performance data for the twenty-two hot fire
tests in which test data is reported. Remaining tests contained either transient or redun-
dant data and were not used for data analysis.

Overall injector efficiency, including the loss associated with
22% FFC, was approximately 91% for the nominal chamber pressure of 720 psia, and
94% for the high (~1000 psia) chamber pressure tests at an overall mixture ratio of 2.2.
Injector core efficiencies, backed out from these overall efficiencies with a calculated
FFC loss, are 97% for the nominal Pc and 99+% for the high Pc. Overall injector effi-
ciency for the nominal chamber pressure, low FFC (~15%) tests, for which there was
valid data only at an overall mixture ratio of ~1.75, performed at the same level as the
high Pc tests at this MR, was about 95-97%. This test at low FFC is representative of
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the fullscale engine, which should require only 10-13% FFC due to its higher tempera-
ture ablative liner and smaller chamber surface area-to- volume ratio.

NOTE: Throughout the test program, a discrepancy in the
redundant flowmeters for both the fuel and oxidizer circuits required that corrections be
made in performance data. In all cases where a discrepancy occurred, the flow mea-
surement resulting in a Jower performance value was used. Consequently, performance
values presented in this report may be slightly lower than would be expected in
operation.

5.3.3.2 Performance Results Discussion

Specific Impulse. The measured specific impulse, Isp, cor-
rected to vacuum conditions, is shown plotted versus mixture ratio for the nominal

(~700 psia) chamber pressure tests with the three different percentages of fuel film
coolant in Figure 5.3.6, and for a constant FFC of 22% at three different chamber pres-
sures in Figure 5.3.7. Both figures include a curve of the theoretical "perfect injector”
Isp with zero percent FFC and a curve of the theoretical "perfect injector” Isp with a cal-
culated fuel film coolant loss. These curves have been included to show that the injec-
tor efficiency can be calculated from the measured data using these theoretical values.
These theoretical curves include the nozzle losses for divergence, kinetics and bound-
ary layer, but assume 100% propellant vaporization and a uniform mixture ratio profile
across the injector face, i.e., perfect mixing. Overall injector efficiency can be deter-
mined by dividing the measured Isp by the theoretical "perfect injector” Isp. The curve
which includes a fuel film coolant loss was determined by estimating how much of the
core gas mixes with the periphery fuel film coolant to create a barrier stream tube and
then mass weighting the core and barrier Isp’s. An injector core efficiency can be
determined by dividing measured Isp by this theoretical "perfect injector” with FFC loss.
It should be remembered, however that the accuracy of this core efficiency is dependent
on the accuracy of the FFC loss that was calculated, and there is some uncertainty in
that number.

Euel Film Coolant Performance Loss. Calculation of the fuel
film coolant loss is dependent on determining how much of the core flow mixes with the
fuel film coolant. In order to estimate the percentage of the core that mixes with, or
becomes entrained in the periphery fuel film coolant, adiabatic wall temperature was
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obtained from the thermal data for two nominal mixture ratio Tests 24 and 27. Test 24
was run with 27% FFC and Test 27 was run with 22% FFC. A barrier mixture ratio was
determined for each of these tests that would give a gas temperature equal to the adia-
batic wall temperature. From this barrier mixture ratio and the amount of tuel film
coolant injected, the percentage of the core that would need to mix with the FFC to
obtain that mixture ratio was calculated. Core entrainment fractions calculated from
these tests were 16.6% for Test 24 and 18.5% for Test 27. Consequently, an approxi-
mate value of 17.5% was decided upon for core entrainment percentage. This value
was used for all of the different FFC amounts. A plot of the fuel film coolant efficiency
versus the overall injector mixture ratio, for the three approximate FFC percentages at
which the tests were run , is shown in Figure 5.3.8.

Injector Efficiency Based on Isp. Overall injector efficiency,

including both core and periphery film coolant losses, was calculated for all of the per-
formance tests and is also presented on Figure 5.3.5. This injector efficiency is shown
plotted versus the overall injector mixture ratio on Figure 5.3.9. Overall injector effi-
ciency decreases with increasing mixture ratio, similar to the calculated fuel film coolant
efficiency.

The high chamber pressure tests (~1000 psia Pc) exhibited a
higher overall injector efficiency than the nominal and low pressure tests. There was
also an apparent difference in injector efficiency between the different fuel film coolant
tests. The two low fuel film coolant (~15% FFC) tests had an overall injector efficiency
of the same order as the high chamber pressure tests, which were run at ~22% FFC.
Injector efficiencies for the 27% FFC tests were approximately 1% lower than that for
the 22% FFC tests at overall mixture ratios greater than about 2.2. These trends do not
exactly match the predicted trend in Figure 5.3.8, however they do validate the general
trends for predicted FFC efficiency. At an overall MR of 2.2 and 22% FFC, overall
injector efficiency was approximately 91% for the nominal chamber pressure tests and
94% for the 1000 psia chamber pressure tests.

Fuel film coolant efficiency was calculated for each test
(based on the %FFC that was measured for that test) and is tabulated in Figure 5.3.5.
These fuel film coolant efficiencies were used to calculate injector core efficiency, also
tabulated in the performance summary table. Calculated core efficiencies are shown
plotted versus core mixture ratio in Figure 5.3-10. Injector core efficiency is flattened
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out by removal of the fuel film coolant efficiency. From core mixture ratios from 2.0 to
2.9, core efficiency remains constant at approximately 97% within the data scatter of
+1%. The few data points at around 3.6 core MR suggest that efficiency may be
starting to tail off. At a core MR of 2.8, the injector core efficiency was approximately
97% for the nominal Pc tests and approximately 99+% for the 1000 psia Pc tests. The
unrealistically high core efficiency (2100%) for one of the high Pc tests could be a result
of inaccuracies in accounting for other losses. Nominal pressure nozzle losses were
used for the analysis of the high pressure test data. There could be slight reductions in
boundary layer and kinetics losses at the higher Pc. However, these losses are small at
the nominal chamber pressure ( almost negligible kinetics loss and a 1.4 Ibf-sec/lbm
boundary layer loss) so this error would be on the order of tenths of a percent. The
most likely explanation for the error is the FFC loss, where an over accounting of this
loss would artificially raise the core efficiency. This bias on core efficiency wouid be
applicable to all the tests and so would not alter the apparent relationship between
injector efficiency and chamber pressure.

Injector core efficiencies for all performance tests and also
for just the tests with core MR's of between 2.7 and 2.8 are plottéd versus chamber
pressure, and fuel and oxidizer injector pressure drops in Figures 5.3-11 These plots
indicate that there is a correlation of injector core efficiency with either chamber pres-
sure or injector pressure drop. The slight drop in efficiency with increasing mixture ratio
(higher oxidizer pressure drop and lower fuel pressure drop) points to fuel injector pres-
sure drop as the source of the increased efficiency. Analytically, this is also more sup-
portable since the fuel vaporization is the limiting factor on the vaporization efficiency
and increased pressure drop will reduce drop size, enhancing vaporization. This sug-
gests that injector efficiency could be improved at the nominal chamber pressure by
increasing fuel injection pressure drop. The impact of this change on the stability char-
acteristics of the injector would also need to be investigated.

5.4 STABILITY PREDICTIONS AND RESULTS
5.4.1 ility Predi n

Combustion stability characteristics were predicted prior to testing
using the ROCCID computer code (Ref. 3). Some of the input parameters were
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anchored using existing F-1 and LOX/HC Injector Characterization Program (Ref. 1)
data base.

5.4.1.1 Chug Prediction

Calculations indicated that marginal chug chamber pressure
would be approximately 361 psia and the chug frequency is approximately 67 Hz. Test
results showed that the engine was chug stable at all operating conditions tested.
Chamber pressures in all tests except Test 13 , where the chamber pressure was mea-
sured to be approximately 354 psia, were above the predicted marginal pressure. Some
tests briefly encountered chug instabilities at a frequency of approximately 80 Hz during
early parts of the start-up transient where the chamber pressures were extremely low
and the injector cavities may not have been completely filled. The instabilities disap-
peared quickly as mean chamber pressures rose to steady-state values.

5.4.1.2 High Frequency Stability

High frequency (acoustic) stability characteristics were pre-
dicted only for the chamber configuration without acoustic cavities. No predictions were
made for chamber with any of the cavity configurations prior to the testing because it is
difficult to predict cavity gas temperature and related sound speed with reasonable
accuracy.

The engine configuration without acoustic cavities was pre-
dicted to be stable at a chamber pressure of 500 psia and an overall mixture ratio of
2.45. Test results, however, showed that the engine configuration was dynamically
unstable at chamber pressures as low as 354 psia. The configuration without acoustic
cavities was predicted to be spontaneously unstable at approximately the nominal oper-
ating point. Although this configuration was not tested at the nominal operating point,
operation at high Pc during Test 14 was stable without perturbation. Therefore, the
nominal operating point is expected to be stable without perturbation. Test 7, with a 4-
inch monotuned cavity, was demonstrated to be dynamically unstable near the nominal
operating point. The configuration without acoustic cavities was predicted to be dynami-
cally unstable (triggered by combustion perturbation bomb) in both 1T and 2T modes at
high chamber pressure, approximately 1000 psia, and in the mixture ratio range
between 1.5 and 2.5. Although chamber pressure and mixture ratio in test 14 corre-
sponded to the operating conditions for which predictions were made, comparison

RPTGO104.116-52/5.8 75 127192



between prediction and test result could not be made because combustion perturbation
bomb was not used in this test. Tests using chamber configuration with bituned cavities
(Tests 30 and 31) showed that operation at high chamber pressures could indeed be
driven unstable with bombs at not only the 1T but also higher modes. Since the cham-
ber with acoustic cavities was tested to be dynamically unstable at higher chamber
pressure, it can be argued that the chamber without acoustic cavities would be dynami-
cally unstable at high chamber pressure.

The results shown in Figure 5.4.1 confirm that the a priori
prediction of rocket engine stability remains very difficult. The ROCCID program is the
latest stability model and utilizes correlations from several different sources to attempt a
stability solution. Much work is still required in this area to develop reliable stability
models capable of stability predictions.

5.4.2 Stability Results

Stability testing was performed to determine injector combustion char-
acteristics for a range of chamber pressures and mixture ratios. Combustion stability
was the most important goal for this injector. Engine system stability margin is essential
to flight reliability. Stability tests were conducted by examining chamber acoustic
response under a variety of damping conditions. The following chart summarizes the
configurations that were used.

Test Ser Test Numi Acoustic Cavity Configurat

1 2thru 8 monotune, 4 in. depth

2 9 thru 14 no cavity

3 15 thru 26 monotune, 2 in. depth

4 27 thru 32 bitune, 1.82/2.76 in. depth

A summary of the combustion stability test results is provided in
Figure 5.4.2. Tests for checking out engine operation (Test 1) and aborted tests (Tests 9
and 11) were not included in the table. The table lists test number, oxygen and RP-1
manifold pressures, chamber pressure, core and overall mixture ratios, and oxygen and
RP-1 injection pressure drops. In addition, cavity configuration, combustion perturbation
bomb size, bomb over-pressure, amplitude and frequency of chamber pressure oscilla-
tion, bomb damp time, and the Kistler transducer number from which presented stability

RPTIG0104.118-52/5.8 76 71271192
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data was obtained are listed. In general, stability data such as bomb over-pressure,
damp time, and amplitude are obtained from the transducer which recorded the largest
value of chamber pressure amplitude or bomb over-pressure.

5.4.2.1 Stability Results

Combustion perturbation bombs were used to drive combus-
tion instabilities and generated over-pressures in the range of approximately 7 to 58
percent of mean chamber pressure. There were no chug (feed system related) instabili-
ties in any of the tests. All combustion instabilities were acoustic instabilities, and were

induced by combustion perturbation bombs. There were no spontaneous combustion
, biliti

Chamber pressure response to a perturbation in a typical
stable combustion test is shown in Figure 5.4.3. In this particular test, bomb over-pres-
sure was approximately 224 psid and the perturbation damped out after approximately
10 msec. In a few stable combustion tests, the perturbation damped out almost instan-
taneously, as shown in Figure 5.4.4. , where the Test 25 chamber response to a pertur-
bation is shown. )

Chamber pressure response to a perturbation in a typical
unstable combustion test is shown in Figure 5.4.5. In this particular test, bomb over-
pressure was approximately 200 psid ( 27% of Pc) and the perturbation grew to a
slightly larger amplitude. A waterfall plot showing the evolution of the power spectral
density (PSD) of the chamber pressure is shown in Figure 5.4.6. A PSD plot of the
chamber pressure is shown in Figure 5.4.7. The PSD plot was obtained by averaging for
a 100 msec period that included approximately 50 msec before and 50 msec after the
chamber pressure perturbation. Figure 5.4.8 shows that the high-frequency pressure
transducers in the propellant manifolds and the accelerometers mounted on the outside
of the combustion chamber detected instabilities and accurately provided the values of
resonant frequencies. These instruments were demonstrated to be well-suited in sup-
plementing the high-frequency pressure transducers in the combustion chamber for
stability data. The figures show several resonant frequencies existing simultaneously.
The first resonant frequency corresponds to the 1T acoustic frequency of the combus-
tion chamber, which is approximately 1325 Hz. Other resonant frequencies, 2679, 4063
5388, and 6772 Hz appeared to be harmonics of the 1T mode.

RPTAG0104.116-52/5.6 8 1 2192
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In the first test series, an engine configuration with a 4-inch
deep cavity was tested. The primary objectives of this test series were to check out
engine operation, and to obtain combustion performance and thermal data.
Nevertheless, stability data was also obtained from this test series. Gas temperature
inside the cavity was measured to estimate the speed of sound in the cavity and used to
tune the cavity in subsequent tests. In this test series, tests 2, 3, 4, and 5 were stable.
Dynamic stability characteristics are not known since no combustion perturbation bombs
were used in these tests. Combustion perturbation bombs were used in the next three
tests resulting in combustion instability in only test 7. Tests 6 and 8 were dynamically
stable.

Measured temperature of the gas inside the cavity (between
250 and 500°F) indicated that the 4-inch deep cavity may have been too long to be
effective for the 1T mode. Cavity gas temperature can infer a cavity sound speed, as
shown in Figure 5.4.9, allowing optimization of acoustic damping. Low cavity gas temp-
erature, and the low speed of sound inside the cavity, probably limited the effectiveness
of the 4-inch deep cavity. The low cavity gas temperature resulted from improper
impingement of RP-1 fuel film cooling (FFC) stream onto the cavity entrance. Following
test series 2, the chamber diameter at the cavity entrance was slightly enlarged to
reduce or eliminate FFC cavity impingement. This resulted in more FFC flow down the
chamber wall, which provides cooling for the chamber and throat region, and higher
cavity gas temperatures which were nearer predicted values. A stability map for series
1, showing stability results for each test, is shown in figure 5.4.10.

In the second test series, the chamber was tested without
acoustic cavities (the cavities were blocked with a full resonator ring) to determine the
baseline combustion stability characteristics. Almost all tests were dynamically unstable.
Tests 9 and 11 were aborted. Tests 10, 12, and 13 were dynamically unstable. Test 14
was stable, but dynamic stability characteristics could not be deduced since no com-
bustion perturbation bomb was used in this test. (See figure 5.4.11 for the stability map).
This test series provided valuable data on the baseline acoustic response of the cham-
ber and confirmed the need for acoustic damping devices.

In the third test series, the acoustic cavity was shortened to
increase the stability margin. The HIFI chamber response model was used to size the
new cavity using cavity gas temperatures measured in previous tests. Cavity depth in

RPTAG0104.116-82/5.6 88 7792



;
T

1000

' v

;

‘._‘_‘____ m_ V. 200 ’l
/TNMW = 16 )

. ‘/“/l'/ i \SOUND ~SPEEA, acgv (‘PPS)

| 000 f} |
-
\RP-1 Vapor
\MW = 172
Y =1.1
o i [ | | 1

© 50 000 S0 2000 2150
Cavity Gas TemperATURE | Top, (°F)

Figure 5.4.9 Acoustic Cavity Gas Temperature can Infer Gas Composition and
Cavity Sound Speed for Cavity Damping Optimization

s (-4



1

1050

:

g

Chamber Pressure, PC3 (peia)
~

Chamber Pressure, PC3 (psis)

$4 & 8 &
ko T
1.80 1.70 1.90 210 2% 280 27 290 a10
Mixture Ratio - Overall
[] stable Il Unstable
Figure 5.4.10 Stability Map for Series 1, 4 inch Cavity

1060 . ;:? .........

10 ]
=i.‘o 1.70 1.90 210 23

280 270 250 310

Mixture Ratio — Overall

[] stable Bl Unstable

Figure 5.4.11 Stability Map for Series 2, No Cavity -

90



this test series was 2 inches. The shallower cavity significantly improved the stability
margin as shown on the stability map, figure 5.4.12. Combustion was dynamically stable
over a larger range of mixture ratio and chamber pressures, including the nominal
operating point. It should be noted that the nominal operating point had been previously
tested to be dynamically unstable in a chamber with a 4-inch deep monotuned cavity
(Test 7).

Following the third series tests, it became clear that an
effective cavity design for widely varying operating points (Pc, MR and FFC rates) was
unlikely. Unfortunately, acoustic cavities are effective only in a specific range of condi-
tions. Cavity depths were based on the speeds of sound inside the cavity that were
inferred from the cavity gas temperatures measured during previous tests. Parametric
evaluation of different cavity distribution was made using the computer code HIFI .
Results are shown in Figure 5.4.14. In this figure, a dimensionless parameter, Ymin (the
inverse of the chamber response) ¢ was plotted for several cavity configurations as a
function of the cavity gas temperature and speed of sound inside the cavities. Cavity
configurations with higher value of Ymin over the range of the cavity sound speed pro-
vide better damping.

To damp instabilities over a wider range of operating condi-
tions, a "bituned" cavity configuration, consisting of cavities with 1.82 and 2.67 inch
depths, appeared to be a good compromise. This cavity configuration, shown below,
was predicted to be effective over a cavity speed range from 600 to 1500 ft/sec. The
bituned cavity was fabricated by machining one of the several blank resonator rings
available.

RPT/GO104 116-5.2/56/14
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2.67 1n DEEP
CAVITY 4PL /
30° 4 PL
EQUALLY
SPACED
1.82 in DEEP }
CAVITY 4PL

Bituned Cavity Configuration

Both cavities were intended to damp out the 1T mode. Cavity
depths differed so that over the range of cavity gas temperatures, at least one of the
cavities would provide some damping for the 1T mode.

Test results , Figure 5.4.13, shows that the bituned cavity
configuration improved the stability margin. Combustion was stable over a larger range
of mixture ratio, including not only the nominal operating point but also at the low
mixture ratio of 1.65 (Test 28) where previous tests with a monotuned cavity (Tests 17,
21 and 22) were unstable. In addition to Test 28, Tests 27 and 29, were demonstrated
to be dynamically stable. Note that Test 29 was at relatively high overall mixture ratio of
2.75. Although a perturbation bomb was used in Test 32 (954 psia), an over-pressure
was not seen on any of the transducers, and this test point is not shown on the stability
map. Higher chamber pressures were tested in Tests 30 and 31 to determine if higher
instability modes could be excited as predicted. Test results indicated that 1T and 2T
modes were excited in Test 31, and that 1T, 2T and 3T modes were excited in Test 30.
Figure 5.4.15 shows the waterfall plot of the chamber pressure in Test 30. The figure
shows PSD peaks at the 3T and 2T frequencies in addition to the peak at the more
common 1T frequency. This result suggests that higher modes may exist at the higher
chamber pressures.

Summarizing the stability test results and conclusions for the
full-scale design:

APT/GO104.16-5.2/5.615 g4 72192
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Acoustic Cavity Required

Combustion was dynamically unstable in tests with-
out a cavity where combustion perturbation bombs
were used. No test was spontaneously unstable.
The absence of higher mode instabilities, 2T and 3T,
at the nominal operating point indicates that simple
damping devices will be sufficient for the fullscale
design.

Chug Stable.

No chug instabilities were encountered at steady-
state operation even at chamber pressure as low as
354 psia. Since chug instabilities are a result of feed
system coupling to the combustion process, this
result confirms the injector as a highly throttieable
design.

+  Dynamically Stable with Bituned Cavity

Methodology

Bituned cavities were effective in providing dynami-
cally stable combustion at nominal Pc and over a
wide range of mixture ratios (overall 1.59 to 2.88).
The bituned cavity may be instrumental in providing
fullscale damping at both nominal and throttled
operating points.

5.5 THERMAL PREDICTIONS AND RESULTS

Thermal data was required at varying operating conditions and cham-
ber positions to characterize the combustion process and to determine material
requirements for component compatibility. The injector and chamber were highly
instrumented to acquire extensive temperature data.

9 5 72792



Characterization of the combustion process was required to establish
the degree of fuel film coolant (FFC) entrainment into the combustion stream. This was
done by comparing the adiabatic wall temperature from two tests with different FFC
rates, determining a barrier mixture ratio, and determining the amount of film coolant
that must have been entrained to achieve this mixture ratio. This information is critical in
determining the amount of FFC required for the full scale ablative design.

Determination of surface heat flux is required to design the copper
injector modules for steady state operation. Face mixture ratio and combustion gas
recirculation velocity is required to predict heating rates for the ablative tace, which will
lead to prediction of surface ablation rate. This was done by measuring the temperature
of the module body and the temperature at the face surface and applying a time
dependent surface temperature boundary condition to a semi-infinite slab, subsequently
inferring the associated surface heat flux. Combustion gas temperatures can be derived
from calculated surface heat flux vs. measured surface temperature. A correlation of
combustion gas temperature vs. mixture ratio leads to estimates of the local wall mix-
ture ratio. The resulting boundary conditions are then used to correlate various injector
face thermal compatibility prediction models, to determine the injector face heat flux and
the resulting mixture ratio of the recirculating combustion products at the injector face.

Chamber temperature measurements were used to determine the
effectiveness of the fuel film cooling (FFC) and generate design data for the design of
the fullscale ablative chamber liner. Utilization of co-axial Type K thermocouples allowed
chamber gas side wall temperature to be measured directly. Two of these thermocou-
ples (TC2 and TC5) were used to automatically terminate engine operation when a pre
set temperature limit was exceeded to minimize steel chamber erosion during the tests.
Additionally, since the chamber wall is thick (1.5 inches) relative to the short ( <1.0 sec-
ond) firing duration, outside wall temperature remains ambient during the firing and it
can be analytically treated as a semi-infinite slab. Gas side wall heat flux can be inferred
along with an estimate of the local adiabatic wall temperature and heat transfer coetffi-
cient if the local mixture ratio and chamber pressure are constant. The adiabatic wall
temperature can be used to determine fuel film cooling design requirements to achieve
a specific wall mixture ratio. Low cost fuel film cooled engine performance can be opti-
mized for allowable surface recession rates with an ablative silica phenolic chamber
which can withstand 4°R design temperatures compared to < 2500°F with instrumented
steel heat sink chambers. '
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5.5.2 Thermal Predictions and Results
5.5.2.1 Injector Face

Thermal predictions were made for the steady state
operating temperature of the copper modules at both nominal Pc and 10% above nomi-
nal Pc using a 3-D computer model. A uniform boundary condition was applied along
the front face of the modules only. Gas side boundary conditions were calculated based
on an injected core mixture ratio of 2.9 which corresponds to a gas temperature of
5621°R. In reality, actual mixture ratio near the modules should be higher due to the
much lower vaporization rate of RP1 relative to LO2 resulting in a lower recovery tem-
perature than predicted.

The maximum steady state temperature of the modules for a
726 psia chamber pressure was predicted to be 1113°F. This was predicted to occur at
the edge farthest from the orifices as shown by the red area in Figure 5.5.1. This is the
location where the propellant conduction cooling path to the orifices is the longest.

These predictions were compared to actual test data from
thermocouples TJ1, TJ2, and TJ6. Test 4 was the best test for obtaining module temp-
eratures. This test was approximately 0.4 sec. duration at a chamber pressure of 711
psia and core mixture ratio of 2.8. TJ1 read much higher that TJ2 and TJ6 for Tests 3
and 4, which was unexpected. Photographs of the injector face taken after Test 6 indi-
cated that the copper plug into which the TJ1 had been inserted had separated from the
module into which it was peened, resulting in an incorrect temperature measurement of
the module. Figure 5.5.2 shows the temperature vs time curves for the remaining ther-
mocouples TJ2 and TJ6. This data shows that the modules did not reach steady state
temperatures during any of the tests, although the slope of the temperature rise was
very small at the termination of the test. It can be inferred from the temperature histories
from Test 4 that the maximum steady state temperatures of the modules should be less
that 750°F for nominal operating conditions; which is 263°F less than the prediction.

The ablative face experienced very little recession through-
out the test matrix. This is partly due to the short firing durations but mainly due to rela-
tively, benign boundary conditions at the injector face. Limited temperature data was
available from TJ4 and TJ5 due to the injector face damage incurred during the shut-
down transient of Test 6. Figures 5.5.3 and 5.5.4 shows the temperature response of

RPTAGO104 118-5.2 /5618 97 121192
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TJ4 and TJ 5 during various tests. The data indicates that the region of the outer row of
modules runs hotter than the region around the inner modules of the injector. This is
attributed to radial winds caused by the three inner modules flowing past the void
between the outer row of modules. The over shoot in the temperatures are due to mix-
ture ratio variations occurring during the start transient due to the LO2/TEA-TEB ignition.
The fact that the temperatures plateau out suggests that gas recovery temperatures are
very low (< 1200°F) in these regions. This accounts for the high test durability of the
ablative face.

5.5.2.2 Combustion Chamber

Thermal predictions of wall temperature histories for the
throat plane at ditferent operating points were conducted assuming 16% fuel film
cooling. The following table shows the results from an analysis to determine maximum
gas side wall surface temperature resulting from a .15 second long start transient fol-
lowed by a .3 sec. steady state burn.

Predicted Steady-State
Wall Temperature

Pc =720 psia Pc = 660 psia
MR = 2.62 1685°F 1601°F
MR = 2.91 1890°F 1707°F
MR = 3.20 2058°F 1983°F

These predictions were found to be optimistic. Axial wall
temperature profiles did not follow expected trends, which are characterized by gradu-
ally increasing wall temperatures with a sharp peak at the throat plane followed by a
gradual drop off in the nozzle. It was not unusual to see a lower wall temperature in the
convergent section than in the barre! section. Figure 5.5.5 shows the axial wall tempera-
ture profile for 0.8 sec. of steady Pc at 22% fuel film cooling at nominal operating condi-
tions. The data shows that the region between the modules ran 400°F hotter than the
region in line with the modules. This can be explained by the combustion analysis pre-
dictions previously presented in section 5.3. Figures 5.5.6 and 5.5.7 show the tempera-
ture histories of the chamber thermocouples for a 0.9 second duration test at steady
state nominal Pc and 22% fuel film cooling.
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The RP1 is less volatile than the LO2 and thus the vaporized
mixture ratio near the forward end of the combustor are oxidizer rich. These oxidizer rich
combustion gases produce especially strong radially outward winds from the three inner
modules between the outer modules. This was shown by TJ4 > TJ5 and TJ6 > TJ2.
Furthermore, accuracy of pre test combustion analysis predictions were validated by
the axial Pc profile correlation which required no post test adjustment to either atomiza-
tion distance or mean atomized drop size predictions. These oxidizer rich combustion
gases between the outer row modules partially consumed the FFC causing an over-
shoot in TC9 temperature before increasing core fuel vaporization rate reduces mean
gas temperature again at TC10 and TC11. In future design applications less FFC will be
required in line with the modules than in between the modules.

Although the 2200°F maximum wall temperature at TC12
may appear excessive for a CRES heat sink chamber, all of the measured temperatures
are excessively cooled for the planned fullscale ablative silica phenolic chamber appli-
cation which can withstand up to 4000°R adiabatic wall temperatures with negligible
erosion. Test data indicate that the maximum amount of fuel film cooling required for
this engine size to accommodate a silica phenolic lined chamber is 22%. As the sub-
scale chamber is scaled up to full scale, film cooling percentage will decrease (to
approximately 10-13%) for the same film cooling entrainment rates. Since a smaller
percentage of the total fuel flow will make up the film cooling flow, engine performance
will be increased.

5.6 HARDWARE DURABILITY

5.6.1 |Injector Face

A concern at the start of testing was the durability of the ablative
faceplate and the copper modules. Face temperatures were predicted to be very high
with a low element density injector pattern, and the response to these high tempera-
tures, especially during a possible combustion instability, were of concern. This unique
injector configuration, with its modular design and large (0.241 inch) orifices, made pre-
dictions of combustion recirculation difficult due to an inadequate data base.

The functional performance of the copper modules was excellent. The
modules showed absolutely no deterioration after the first 13 tests which included sev-
eral forced instabilities. Test 14 was a high Pc (1030 psia) test and of longer duration
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(1 sec). This test resulted in some copper loss about .060 inch deep at the outer edges
of the module face on the outer modules only as shown in Figure 5.6.1. The copper
melting appeared to be inhibited after it had progressed to within about 1/4 inch of the
orifice, demonstrating the self cooling effects of the LOX and fuel flows. The modules
showed no additional erosion until the next high Pc test, Test 30, which resulted in addi-
tional copper loss at the outer edges, but no additional melting near the orifices. The

- higher Pc tests have significantly higher heat flux than the nominal design condition. All
of the module orifices remained round and hydraulically unaffected by the erosion.

The ablative faceplate also performed well. Even though the longest
test was about 1 second, the ablation rate was less than expected.

The original faceplate was replaced after Test 6 due to a failure mode
unrelated to face durability. A sealing void between the back of the faceplate and the
manifold mounting surface is suspected to have allowed seepage of residual RP-1 from
the previous test's shutdown transient. Ignition of the next test probably resulted in a
detonation which fractured the faceplate along a high stress concentration plane
occurring at the attachment point. The faceplate was replaced with a new unit, making
sure a positive seal was accomplished between the faceplate and the injector body.
This faceplate endured the remaining 26 tests without incident. After these tests, with a
combined duration of about 15 seconds, the ablative material had recessed approxi-
mately 0.25 inch at the maximum point, which occurred adjacent to the eroded copper
module edge. Faceplate erosion near intact module edges was less than 0.13 inch.
Figure 5.6.1 shows the faceplate at the conclusion of testing. Post test inspection of the
ablative material (forcibly removed for analysis) showed a char layer of only .030 inch.
This indicates a lower than expected ablation rate, however, predictions are difficult
using data from short duration tests. More precise ablation data could be obtained with
longer duration testing.

The FFC injection ring experienced some overheating and metal loss
between the injection orifices during the two high Pc tests described above. The orifices
were able to self-cool themselves, as with the modules, and were hydraulically and
functionally unaffected by the surrounding erosion. The FFC ring is also shown in figure
5.6.1 at the conclusion of testing. The areas of erosion and self-cooling can be clearly
seen.
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5.6.2 Chamber

The chamber performed well throughout the test program with some
erosion , approximately 0.5 inch of the 1.65 inches wall, due to overheating at the sur-
face. The CRES "heat-sink™ design was expected to absorb the heat from combustion,
and local erosion at the wall was anticipated. The chamber was designed so that the
majority of the steel structure would remain at room temperature even if the wall expen-
enced local melting.

During the initial Block Il testing, premature engine shutdown was sig-
naled when chamber wall temperatures exceeded their 1700°F kill limits. Wall tempera-
tures were higher and occurred sooner than predicted. Erosion and moiten flow of the
steel in three distinct areas was also noticed. The erosion of the wall, although not
structurally threatening, was of concern at this early stage in the testing. By adjusting
the temperature kill limits as high as 2100°F, the tests could be extended to durations of
0.2t0 0.5 seconds. These steady-state durations were still long enough to obtain satis-
factory thermal data, due to the length of the shutdown transient (=0.3 sec). Block Il
testing was completed successfully through Test 8.

Inspection of the chamber after Test 8 revealed the probable cause for
the high wall temperatures. Impingement of the fuel film cooling (FFC) streams was not
as intended, as shown in Figure 5.6.2. FFC flow intended for the chamber wall was
actually impinging 50% into the acoustic cavity. This condition was confirmed by very
low cavity gas temperatures (500°F vs. the 1100°F expected) measured by cavity ther-
mocouples. Misimpingement of the FFC is postulated to be a result of stronger radial
combustion winds than expected.

The chamber was modified by chamferring the leading edge 0.070
inch by 1.5 inches, as shown in Figure 5.6.2 . This was done before the stability series
for two reasons; redirecting the FFC flow down the chamber wall would allow longer
durations and better thermal data and, reducing the excess fuel in the acoustic cavity
would provide more valid cavity sound speed data for the full scale design conditions.
The chamber was modified on the test stand by grinding and , although not as precise
as a lathe-turned cut, was adequate to improve cooling with the minimum cost/schedule
impact. Subsequent tests showed significantly lower wall temperatures, and resulting
test duration increases, even at higher Pc's and MR's. Some overheating of the wall still
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occurred at high MR and low FFC rates, but chamber erosion was limited to approxi-
mately 0.5 inch after 32 tests. Unfortunately, the initial erosion created a roughened
surface that could have easily tripped the boundary layer and had a significant effect on
the wall heating during later tests. An attempt was made to smooth this roughened sur-
face, but because of the hardness of the remelted steel and the large surface area
involved, the time required was prohibitive. The chamber would probably have cooled
better if the initial damage had not occurred.

In addition to the FFC flow issue, the erosion pattern on the chamber
was indicative of an injection non-uniformity. The presence of three distinct erosion
areas, or "streaks”, indicated that oxygen-rich combustion gas was impinging on the
chamber wall, causing secondary combustion with the FFC flow as shown in figure
5.6.3. This non-uniformity appeared to be a result of interaction between 3 grouped
modules and may be aggravated by radial winds. This interaction of developed injection
fans is difficult to predict, and will require cold-flow characterization and possibly CFD
techniques to analyze and resolve. Since this condition could not be corrected on the
existing hardware, overall FFC rate was increased, wall temperatures were monitored
closely and testing continued. ' '

There were no other problems experienced with the chamber or the
resonator rings. All instrumentation ports and flanges remained leak-free throughout
testing. Bomb port openings, especially the tangential port, experienced some erosion
at the sharp edge into the chamber, but this erosion did not affect the installation or
performance of the bombs.

5.6.3 her Com n

All other components performed flawlessly throughout testing. Bomb
hardware, which had been proven on previous programs, caused no difficulties. The
proof plates, adapters and instrumentation components performed without incident.
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6.0 APPLI T

6.1 SUBSCALE TESTING RESULTS AND CONCLUSIONS

The goal of this program was to develop the technology for pressure fed
engines by resolving several design issues through subscale testing. This testing was
very successful in resolving many of these design issues with test data. The most critical
of the design issues and their resolution are described below.

6.1.1 | | wi re Onl le Damping Devi for
Stable Operation

The most important issue requiring resolution was the stability ques-
tion. Demonstrated stability is an essential step in the development of a new engine
technology. Our plan was to demonstrate stability on a subscale level which could be
correlated to the fullscale engine using Aerojets proven scaling techniques.

The subscale engine was stable at all operating points tested.
Artificial perturbation of the combustion drove some instabilities, allinthe 1T (first tan-
gential) mode. The development of a bituned acoustic cavity successfully damped the
instabilities, and the engine was dynamically stable near the nominal operating point at
the conclusion of testing.

This result indicates that stable operation in the fullscale configuration
will be achievable and will require only acoustic cavity damping for the 1T mode. This
elimination of the need for higher-order mode damping (baffles, etc.) will significantly
reduce complexity and cost of the fullscale design.

6.1.2 Ablative Chamber / Nozzle will M Design R iremen

The fullscale design employs an ablative lined chamber and nozzle tor
economy and performance. The ablative material chosen was silica phenolic due to its
low cost and past success in LOX/RP engines in short duration applications. Verification
of its suitability for the flight application ( approximately 150 seconds duration) was
required.

Measurement of the gas-side temperatures during subscale testing
was performed to predict fullscale temperatures during a long duration burn.
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Temperatures were measured with varying chamber pressure, mixture
ratio and film coolant rate to establish the effect of each on ablative performance.
Although the tests were of short duration, thermal data indicated that steady-state
temperatures had been achieved.

The maximum gas-side temperatures measured were 2200-2300 °F
as discussed in Section 5.6. Silica phenolic is capable of sustained temperatures in the
3500-4000 °F range while exhibiting negligible erosion. Test results indicate that silica
phenolic will withstand chamber conditions for the fullscale design.

Test data has indicated that the silica phenolic lined chamber/nozzle
will perform well for the fullscale engine. However, thorough testing of an ablative
assembly, either subscale or fullscale , is required to confirm design predictions

6.1.3 r iv In Design i itable for
LOX / RP Application

The use of an ablative material on the injector face is an unusual
approach for a liquid engine. Face heat flux can vary widely depending on the injection
elements, spacing, injection velocities, recirculation of propellants and other factors. ~
Verification of face heat flux was required to confirm the ablative faceplate design.

Direct measurement of the face heat flux was accomplished with face
mounted thermocouples, both on the modules and surface temperature measurements
in the ablative area. Test data indicated maximum module/surface temperatures, for the
nominal operating condition, in the 700-800 °F range. These temperatures are below
the maximum 1100°F copper maximum temperature and far below ablative maximums.
These measurements are confirmed by visual effects on the injector face, which showed
negligible erosion after nominal tests. Nearly all of the module/faceplate erosion
occurred during high Pc (1000 psia) tests.

6.2 FULLSCALE DESIGN FEATURES

The successful subscale testing resulted in very few changes in the fullscale
preliminary design generated at the beginning of the program. The modular concept for
the injector was a proven success. The ablative chamber/nozzle design is predicted
sound by test results, as is the ablative faceplate. The inherent stability of the engine will
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result in a shorter acoustic cavity requirement, which will shorten the injector and signifi-
cantly reduce weight. The demonstrated low chug point (<350 psia) indicates that this
engine will be highly throttleable. A preliminary flight configuration is shown in Figure
6.2.1 , without regard to engine size. It is expected that this low-cost concept could be
adapted to any engine size.

6.3 DEVELOPMENT REQUIREMENTS

~ This engine will require limited development work when it is scaled up to the
fullscale configuration. The following requirements have either been predicted with high
confidence or have some performance database and are considered to be low risk.

. Verification of ablative performance under long duration testing. Ablative
liners and faceplates must be tested long duration to measure and verify
ablation rates.

. Demonstrate injector characteristics at fullscale. Fullscale testing must
be performed to size acoustic damping devices and measure perfor-
mance :
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